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We have studied the effect of dynamical correlations on the electronic structure of single Co adatoms on
graphene monolayers with a recently developed method for nanoscopic materials that combines density-
functional calculations with a fully dynamical treatment of the strongly interacting 3d electrons. The coupling
of the Co 3d shell to the graphene substrate and hence the dynamic correlations are strongly dependent on the
orbital symmetry and the system parameters (temperature, distance of the adatom from the graphene sheet, and
gate voltage). When the Kondo effect takes place, we find that the dynamical correlations give rise to strongly
temperature-dependent peaks in the Co 3d spectra near the Fermi level. Moreover, we find that the Kondo
effect can be tuned by the application of a gate voltage. It turns out that the position of the Kondo peaks is
pinned to the Dirac points of graphene rather than to the chemical potential.
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I. INTRODUCTION

Since its recent discovery, graphene—a monolayer of
graphite—has become the subject of intense research due to
its peculiar electronic properties.!~* The unusual properties
of graphene are largely a result of the linear dispersion of
electron bands at low energies and its two dimensionality.
This allows to describe the charge carriers in graphene as a
two-dimensional (2D) gas of massless Dirac fermions. The
unusual electronic properties and the fact that its chemical
potential can easily be tuned by a gate voltage make
graphene an ideal experimental testing ground for exotic
physics as well as a promising basis for novel nanoelectron-
ics devices. For recent reviews of this rapidly developing
field and additional references, see, e.g., Refs. 5-7.

Graphene is also a good testing ground for exotic Kondo
physics:? first, the linearly vanishing density of states (DOS)
of graphene favors the formation of a local moment® which
is a necessary condition for Kondo physics. Also vacancies
and edge defects in graphene have been predicted to give rise
to magnetic moments.'®!! Very recently, the Kondo effect
has actually been observed at local defects in graphene pro-
viding evidence that defects in graphene are indeed
magnetic.12 On the other hand, as a result of the linearly
vanishing DOS, a magnetic moment coupled to a graphene
layer can only display a Kondo effect if the strength of the
coupling is strong enough.!3-!5 Furthermore because of the
existence of two inequivalent Dirac cones, it has multiple
channels which can in principle screen the impurity spin and
could therefore lead to a multichannel Kondo effect and
hence non-Fermi-liquid behavior.'®2° Kondo effect and the
possibility of multichannel Kondo effect in graphene have
been discussed in a number of recent publications.?!~2°

Moreover, it is possible to probe the Kondo effect of mag-
netic adatoms on graphene by scanning tunneling micros-
copy (STM). Similar to STM spectroscopy of magnetic ada-
toms and molecules on metallic surfaces,?’° the Kondo
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effect could show up as Fano line shapes in the conductance
vs bias voltage characteristics of the STM or as additional
temperature-dependent peaks in the STM spectra. But in
comparison with normal metallic surfaces the Fano line
shapes for graphene are expected to be more asymmetric and
strongly dependent on the symmetry of the d orbitals of mag-
netic atom.?

The goal of this work is to perform a realistic study of the
Kondo effect for a single Co adatom on an otherwise perfect
graphene sheet by using a recently developed approach for
nanoscopic systems that combines ab initio electronic struc-
ture calculations on the level of density-functional theory
(DFT) calculations with a full dynamical treatment of the
strongly interacting 3d electrons.>! A realistic treatment al-
lows us to investigate under which conditions the Kondo
effect takes place in a given orbital and the detailed spectral
functions that arise from the Kondo effect in a semimetallic
substrate.

This paper is organized as follows: in Sec. II we briefly
describe our recently developed generalized gradient ap-
proximation plus one-crossing approximation (GGA+OCA)
method?' for the quasi-ab initio description of the electronic
structure of nanoscopic systems fully taking into account dy-
namical correlations by combining DFT calculations with a
dynamical treatment of the strongly interacting 3d electrons
in the so-called OCA.

In Sec. III we present DFT electronic structure calcula-
tions in the GGA for determining the most favorable adsorp-
tion site for the Co atom on the graphene sheet. In agreement
with previous results by other groups>*?>3? we find that the
hollow site is the most favorable adsorption site. Using hy-
brid functional calculations which generally predict better
geometries for molecules we have then optimized the ad-
sorption height of the Co atom at the hollow site of the
graphene. Using GGA we have also calculated the charge
and spin of the Co atom in dependence of the distance to the
graphene sheet for the three different adsorption sites. The
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plots indicate that depending on the distance the Co atom can
be either in the local-moment regime or in the weak correla-
tion regime. Since the potential-energy curves are very shal-
low it seems feasible that the correlation regime be con-
trolled via the distance of the Co atom to the graphene
substrate in an actual experiment.

In Sec. IV we study the impact of dynamical correlations
of the Co 3d electrons on the electronic structure of the Co
atom and the graphene sheet using the GGA+OCA method
for nanoscopic systems as described in Sec. II. We find that
the dynamical correlations of the Co 3d electrons give rise to
strongly temperature-dependent peaks near the Fermi level in
the spectral density of the Co 3d shell but also in the spectral
density of the p, orbitals of nearby carbon atoms. Further-
more, we find that the Co 3d spectra depend quite strongly
on the exact energies of the Co 3d levels. Accordingly, the
application of a gate voltage which changes the chemical
potential of the graphene substrate has a similar effect on the
spectra. Hence the dynamic correlations and the Kondo ef-
fect can be controlled by the application of a gate voltage.
Finally, in Sec. V we conclude this work with a general
discussion of the results in the light of Kondo physics.

II. GGA+OCA METHOD

We consider a single Co adatom adsorbed at the hollow
site of an otherwise perfect graphene sheet as shown in Fig.
3. To proceed we divide the system into two parts. The cen-
tral region C which contains the Co adatom and a number of
carbon atoms is embedded into the host material H given by
a perfect graphene sheet. The central region C has to be
chosen big enough so that the electronic structure outside of
the region can be assumed to be that of a perfect graphene
sheet.

As a first step a mean-field description of the electronic
structure of the system is obtained from DFT calculations on
the level of GGA using the CRYSTALO06 ab initio electronic
structure code®? together with the 6-31G Gaussian basis set:
by setting up a 2D lattice of supercells of the C region we
obtain an effective one-body Hamiltonian H¢ for the C re-
gion from the Kohn-Sham (KS) Hamiltonian of the con-
verged GGA calculation. Analogously, we obtain an effective
mean-field description of the host material from a GGA cal-
culation for a supercell of clean graphene corresponding to
the C region.

The Green’s function of the central unit cell C is then
given by

Ge(w) =[0+ p—He +hge = X34(0) = Zy(w)]. (1)

3 u(w) is the embedding self-energy which describes the dy-
namic hybridization between the central region C and the
host material H. The embedding self-energy is obtained from
the GGA calculation of the perfect graphene sheet as ex-
plained in Appendix A.

S5(w) is the electronic self-energy describing the dy-
namic correlations of the strongly interacting 3d electrons.
The strong interactions of the Co 3d shell are captured by
adding a Hubbard-type interaction term to the one-body
Hamiltonian within the correlated 3d subspace,
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Uijji are the matrix elements of the effective Coulomb inter-
action of the 3d electrons which is different from the bare
Coulomb interaction due to the screening by the conduction
electrons. Here we take a model interaction taking into ac-
count only the direct Coulomb repulsion U between elec-
trons and a Hund’s rule coupling J. For 3d transition-metal
elements in bulk materials the repulsion U is around 2-3 eV
and J is around 0.9 eV.** Due to the lower coordination of
the Co atom on the graphene sheet the screening should be
reduced compared to its bulk value. Here we take U=5 eV
and J=0.9 eV as in our previous work.3!

The Coulomb interaction within the correlated 3d sub-
space has already been taken into account on a static mean-
field level in the effective KS Hamiltonian of the central unit
cell C. Therefore the KS Hamiltonian within the correlated
subspace h;(dS has to be corrected by a double-counting cor-
rection term (DCC), i.e., hy,=h%;—hy.. Here we use the
standard expression,

hye = [U(N3g=1/2) = J(N34 = 1)/2] X 134, (3)

where 15, is the identity matrix in the Co 3d subspace and
N, is the occupation of the impurity 3d shell.??

In order to compute the electronic self-energy X5, we
have to solve the generalized Anderson impurity problem
given by the strongly interacting Co 3d electrons. The impu-
rity problem is completely determined by the interacting

Hamiltonian of the Co 3d shell, i.e., Hsy=hs,+Hy, and by
the so-called hybridization function A;,(w) which describes
the dynamic hybridization of the Co 3d shell with the rest of
the system (i.e., the bath). The hybridization function can be
extracted from the non interacting Green’s function [Gg]‘1
=[G¢]'+2;5,(w) of the central region C as follows:

Asy(w)=w+u-hy gl ()] (4)

g}, is the noninteracting Green’s function projected onto the
3d shell of the Co atom, i.e., g3,=P;,G2P3,.

Solving the generalized Anderson impurity problem is a
difficult task and at present there is no universal impurity
solver that works efficiently and accurately in all parameter
regimes. Here we make use of impurity solvers based on an
expansion in the hybridization strength given by A;,(w)
around the atomic limit. The starting point is an exact diago-
nalization of the (isolated) impurity subspace, i.e., the Co 3d

shell in our case given by the interacting Hamiltonian 7:(3d.
The hybridization of the impurity subspace with the rest of
the system [given by the hybridization function As,(w)] is
then treated perturbatively.

The so-called noncrossing approximation (NCA) is a self-
consistent perturbation expansion to lowest order in the hy-
bridization strength. NCA only takes into account the most
simple diagrams describing simple hopping processes where
an electron or hole hops into the impurity at some time and
then out at a later time (see Fig. 7 in Appendix B). The
so-called OCA improves upon the NCA by taking into ac-
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count second-order diagrams where two additional electrons
(holes) are accommodated on the impurity at the same time
in addition to the NCA diagrams as shown in Fig. 7. OCA is
the lowest-order self-consistent approximation that is exact
up to first order in the hybridization As,% V? for all physical
quantities while NCA is only exact to first order in A, for
the conduction-electron self-energy. OCA improves consid-
erably many of the shortcomings of NCA: it substantially
improves the width of the Kondo peak and hence the Kondo
temperature which now are only slightly underestimated. It
also corrects the asymmetry of the Kondo peak. For very low
temperatures (T<<Ty), however, the height of the Kondo
peak is still overestimated and the Fermi-liquid behavior at
zero temperature is not recovered.

Hence, OCA is a reasonable approximation for solving
the generalized impurity problem as long as the temperatures
are not too low (i.e., more than one order of magnitude be-
low Tx). In Appendix B we give a brief introduction to the
NCA and OCA impurity solvers. A detailed description of
the NCA and OCA methods can be found, e.g., in Refs. 8 and
36-38.

III. DFT ATOMIC AND ELECTRONIC STRUCTURE
CALCULATIONS

First, we have calculated the adsorption curves for a Co
atom on a graphene sheet with density-functional calcula-
tions within the GGA with the CRYSTAL06 (Ref. 33) ab initio
electronic structure program for periodic systems employing
an elaborate all-electron Gaussian basis set (6-31g).

As possible adsorption sites for the Co impurity we con-
sider the three high-symmetry sites shown on the inset of the
top panel of Fig. 1, i.e., the hollow, top, and bridge sites. For
the calculations we have chosen a 5 X5 unit cell in order to
avoid interactions between impurities in different unit cells.
We have checked that the results essentially do not change
when choosing a slightly smaller (4 X4) or bigger (6 X6)
unit cell. Figure 1(a) shows the adsorption energy for a Co
atom in dependence of the distance i between the Co atom
from the graphene sheet for the three different sites. One can
see that the hollow site is the most favorable absorption site.
We find the energy minimum for this site at a distance of &
=1.51 A. As can be seen the energy minima for the other
two adsorption sites are much more shallow. We find &
=1.81 A for the bridge site and h=1.96 A for the top site.
The top site is somewhat more favorable in energy than the
bridge site.

In Fig. 1(b) the magnetic moment of the Co atom in de-
pendence of the height & of the Co atom over the graphene
sheet is shown. Initially the magnetic moment is 3, i.e., that
of a free Co atom. When the Co atom approaches the equi-
librium distance for a certain adsorption site the magnetic
moment starts to decrease. At the equilibrium distance, the
magnetic moment of the Co atom has decreased to below 1.5
for the hollow site while for the bridge site it is more close to
1 already. For the top site, on the other hand, the magnetic
moment is still around 3 at the equilibrium distance as for the
free atom. The magnetic moment for all three adsorption
sites approaches 1 when further decreasing the height of the
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FIG. 1. (Color online) Adsorption of Co atoms on graphene. (a)
Adsorption energy of Co adatom on graphene sheet in dependence
of distance A for the three different adsorption sites as shown in the
inset: hollow (h), top (t), and bridge (b) sites. (b) Magnetic moment
of Co adatom on graphene sheet in dependence of distance /& be-
tween Co atom and graphene sheet.

Co atom. In the case of the bridge adsorption site the transi-
tion from the free magnetic moment of 3 wp to a magnetic
moment of 1 up is remarkably abrupt. A summary of our
GGA results is given in Table I. Our GGA results are in good
agreement with previous work by other groups using differ-
ent methods.?*3? In particular, we find for the hollow adsorp-
tion site at the equilibrium distance that the magnetic mo-
ment of the 3d shell is indeed close enough to 1, implying a
spin 1/2 for the Co 3d shell, as reported by Wehling et al.>*
However, the occupation of the 3d shell is around 7.5 and
not around 9 as reported by Wehling et al. As will be ex-
plained below the approximate spin 1/2 of the Co 3d is es-
sentially due to a hole in the E; minority-spin levels.

We have also performed hybrid functional calculations®
which in general yield better geometries for molecules. Us-
ing the GAUSSIANO9 (Ref. 40) quantum chemistry code we
have optimized the distance % of the Co atom on the hollow
site of a finite graphene flake of hexagonal shape with 24 C
atoms and with H atoms at the borders to saturate the
bonds.*! Employing the popular Becke-three-parameter-Lee-
Yang-Parr (B3LYP) hybrid functional together with the
6-31G basis set (also employed before in the CRYSTALO06 cal-
culations) we now find a considerably higher value for the
optimal height of the Co atom at the hollow site, namely, /
=1.87 A. For the GGA functional we obtain very similar
results (h=1.47 A) as before with CRYSTALO6 code. At the
optimal height calculated with B3LYP (h=1.87 A) both, the
GGA and the B3LYP results are remarkably similar with
respect to the magnetic moments and occupations of the

9
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TABLE 1. Summary of GGA results. Optimal height (h) of Co atom, adsorption energy (E,q), charge
(AQc,), and magnetic moment (uc,) of Co atom, total magnetic moment of unit cell (x), occupation (N3,),
and magnetic moment w3, of Co 3d shell for the different adsorption sites considered here, i.e., hollow (h),
bridge (b), and top (t). In the last row (h*), we show the GGA results for the Co atom at the hollow site for
the optimal distance h=1.87 A calculated with the B3LYP hybrid functional (see text).

h E.q
(A) (eV) AQc,(e) Mco M N3y M3d
h 1.51 -1.395 0.536 1.336 1.127 7.530 1.197
b 1.81 -0.660 0.354 1.175 1.109 7.533 1.627
t 1.96 -0.628 0.248 2.905 2913 7.365 2.150
h* 1.87 0.311 3.065 2.890 7.337 2.150

Co 3d shell: the occupation of the 3d shell is 7.4 and the
corresponding magnetic moment is close to 2 now, implying
a total spin of 1 for the 3d shell. In the last row of Table I, we
have added the GGA results for the hollow site with the Co
atom at the optimal distance h=1.87 A calculated with the
B3LYP functional.

In Fig. 2, we show the Co 3d-spectral functions calculated
with spin-polarized GGA for the Co atom at the hollow site
for two different heights, i.e., the optimal height predicted by
GGA (h=1.51 A) and the optimal height (h=1.87 A) pre-
dicted by B3LYP. Due to the C6 symmetry of the system the
Co 3d shell splits into three symmetry groups: The nonde-
generate A, group consisting of the rotationally invariant
3d;2_,» orbital only, the doubly degenerate E, group consist-
ing of the 3d,, and 3d,, orbitals and the E, group consisting
of the 3d,, and 3d>_,» orbitals. The positions of the peaks in
the spectral functions show the effective energy levels for
each of the symmetry groups. We can see that at the GGA
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FIG. 2. (Color online) Co 3d-spectral densities calculated with
spin-polarized GGA for Co atom at hollow site for (a) the GGA
equilibrium distance =1.51 A and (b) the B3LYP equilibrium dis-
tance h*=1.87 A. Full (dashed) lines correspond to spin-up (down)
states. The vertical dashed line indicates the Fermi level.

equilibrium height [Fig. 2(a)] the spin 1/2 is essentially due
to a hole in the E,; levels. The E; minority-spin levels are
exactly at the Fermi level and hence are half filled while the
E; majority-spin and the A; and E, minority- and majority-
spin levels are well below the Fermi level. This level scheme
seems to suggest a 3d° configuration as reported by Wehling
et al.,** although the true occupation of the 3d shell is really
only 7.5. The reason for this apparent discrepancy is the
dynamic hybridization of the Co 3d levels with the graphene
substrate.

The Co 3d-spectral density calculated at the B3LYP equi-
librium distance is shown in Fig. 2(b). The main difference
with the spectral density at the GGA equilibrium [Fig. 2(a)]
is that the peak corresponding to the minority-spin E; levels
are now completely above the Fermi level, and hence the
minority-spin E,; levels are completely empty. Hence the 3d
shell now yields a magnetic moment of about 2, i.e., a spin 1
due to two holes in the E; levels. Note that now the total
magnetic moment of the Co atom is 3 due to a single elec-
tron in the Co 4s orbital which is fully spin polarized. Also
note that in this geometry, both the A, and the 4s levels do
not couple at all to the graphene substrate for symmetry
reasons.”* Our GGA results at the B3LYP equilibrium dis-
tance show some similarity to the GGA+U results of We-
hling et al.?

IV. GGA+OCA CALCULATIONS FOR CO ATOM
ON HOLLOW SITE

The inset of Fig. 3 shows the central region C containing
the Co adatom at the hollow site embedded into a perfect
graphene sheet. The cell has been taken large enough in or-
der to avoid interaction between Co atoms in the CRYSTAL
periodic supercell calculation. The shape of the unit cell has
been chosen to reflect the sixfold symmetry of the system.
The C region can now be embedded directly into the
graphene lattice set up by supercells of the same shape as C
as described before in Sec. II.

Due to the C6 symmetry of the system the Co 3d shell
splits into three symmetry groups: The nondegenerate A;
group consisting of the rotationally invariant 3d;2_,> orbital
only, the doubly degenerate E; group consisting of the 3d,,
and 3d,, orbitals and the E, group consisting of the 3d,, and
3d,>_,> orbitals.
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FIG. 3. (Color online) Imaginary part of the hybridization func-
tions for the Co atom at the hollow site as shown in the inset for
h=1.87 A and for the three symmetry groups. The inset shows a
graphene sheet with Co adatom at hollow site. The red (gray) hexa-
gon indicates the central region C containing 54 carbon atoms.

The right panel of Fig. 3 shows the hybridization func-
tions for each symmetry group. As can be seen at low ener-
gies the 3d;.2_,2 orbital (A;) has an essentially flat and zero
hybridization with the graphene sheet. This can be under-
stood by the fact that the coupling of the 3d5.2_,» on the
hollow site to the 2p, orbitals of the graphene sheet is zero
due to symmetry considerations.”* The E, group has the
(overall) strongest coupling to the C 2p, orbitals in that ge-
ometry as can be seen from the corresponding hybridization
function. Note that the hybridization function for both the E
and E, symmetry groups vanish linearly near the Fermi en-
ergy reflecting the linear DOS of the graphene sheet. Inter-
estingly, the slopes for the E;- and E,-hybridization func-
tions are different for energies below and above the Fermi
level. Moreover, for negative energies the E;-hybridization
function has a steeper slope than the E, hybridization while
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TABLE II. Crystal field splittings for 3d shell of Co atom on
hollow site of graphene (h=1.87 A). %(ds are the on-site energies
before double-counting correction, Re Az, is the real part of the
hybridization function at the Fermi level, and "ég(ds = 33(;
+Re A34(0) are the effective on-site energies taking into account the
real part of the hybridization function. Note that the A; and E,
effective energy levels are almost degenerate.

&y Re Az Gy

(eV) (eV) (eV)
A, -3.650 -0.144 -3.794
E, -3.637 +0.197 -3.440
E, -3.414 -0.389 -3.803

for positive energies it is the other way round. This implies
that E; couples predominantly to the negative-energy band of
graphene while E, couples predominantly to the positive-
energy band.

In Table II, we show the energy levels, the real part of the
hybridization function at the Fermi level, and the effective
energy levels of the Co 3d shell. While the splitting of the
bare energy levels €3, is around 0.2 eV, the splitting of the
effective energy levels &, taking into account the (real part
of the) hybridization with the graphene is somewhat bigger
with around 0.4 eV. Taking into account the real part of the
hybridization changes also the ordering of the energy levels.
For the ordering of the effective energy levels we obtain:
€(E,) <€&(A;)<€(E,). Note that this level ordering is similar
to the one obtained by Wehling et al.?

A. GGA +OCA results

We now solve the generalized impurity problem of the
Co 3d shell coupled to the graphene sheet by using the OCA
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FIG. 4. (Color online) GGA+OCA results for U=5 eV and J=0.9 eV and total occupation N, of the 3d shell around 7.0. [(a)-(c)]
Co 3d-spectral functions near the Fermi level for all three symmetry groups at different temperatures. The insets show the corresponding
orbital occupations as a function of temperature. (d) Spectral function of p, orbital of carbon atoms near the Co atom for different
temperatures. The black dashed line shows the p_-spectral function when the self-energy of the Co 3d electrons 23, is set to zero. (e)
Comparison of GGA +OCA 3d-spectral density with spin-polarized GGA spectral density on a large energy scale. The inset shows a blowup

of the region near the Fermi level.
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impurity solver as described in Sec. II and in Appendix B.
We take the Coulomb repulsion U between d orbitals to be
somewhat higher than in bulk due to the supposedly smaller
screening: U=5 eV. The Hund’s rule coupling is taken to be
the same as in bulk, i.e., J=0.9 eV since it is less affected by
screening effects. The DCC was calculated by the standard
expression given by Eq. (3) and taking the GGA value of
about 7.5 for N3, With OCA, the total occupation of the
impurity 3d shell is now between 7.1 and 7.0 at low tem-
peratures compared to the GGA value of 7.5. This result is
very typical for correlated calculations: the correlations push
the system toward integer occupation numbers to lower the
energy.

Figure 4 shows the spectral functions of the Co 3d elec-
trons for different temperatures calculated with OCA. At
high temperatures we find peaks near the Fermi level for all
three symmetry groups. However, the temperature dependen-
cies of the individual peaks are quite different from each
other: For the A; symmetry consisting of the d;,_,. orbital
the peak becomes smaller at increasing temperatures and fi-
nally develops a steplike behavior at low temperatures. The
peaks in the E; and E, spectra on the other hand become
more pronounced with decreasing temperature more or less
as expected for Kondo effect.

The form of the spectral functions and the temperature
behavior can be understood by looking at the occupation
numbers for the different symmetry groups. The insets of
Figs. 4(a)-4(c) show the occupation numbers as a function of
temperature for each of the three symmetry groups. For the
A symmetry the occupation changes from =1.6 at high tem-
peratures to almost 2 at low temperatures. Hence, at low
temperatures the dj;»2_ 2 orbital is practically completely
filled and excitations near the Fermi level are suppressed.
For the E,-symmetry group composed of the d,, and d,, or-
bitals the occupation changes from 2.8 at high temperatures
to 2.1 at low temperatures. Hence at low temperatures this
doubly degenerate channel is essentially half filled, corre-
sponding to a spin of almost 1 in this channel due to Hund’s
rule coupling. The peak near the Fermi level in the
E,-spectral function is hence due to a spin-1 Kondo effect in
this channel. For the E, symmetry composed of the d,, and
d,>_,> orbitals we find an occupation of 2.8 for high tempera-
tures, and of almost 3 for low temperatures. Hence the dou-
bly degenerate E,-channel accommodates three electrons
with a total spin 1/2 so that the peak in the E,-spectral func-
tion is due to a spin-1/2 Kondo effect. Accordingly, the peaks
near the Fermi level in the 3d-spectral function at low tem-
perature are due to a spin-3/2 Kondo effect in the 3d levels.
This interpretation is further corroborated by the fact that the
main contribution to the electronic configuration of the 3d
shell is an eightfold degenerate state with N,=7 and S
=3/2. The very fact that such a high spin state can be
screened by the graphene substrate is an evidence of the
multichannel character of the graphene as a conduction-
electron bath.

In Fig. 4(e) we compare the 3d-spectral density calculated
with the GGA+OCA (at T=120 K) method on the one hand
and with spin-polarized GGA on the other hand. As can be
seen the spectral densities calculated by the two methods
differ significantly from each other. In the GGA spectrum,

PHYSICAL REVIEW B 82, 085423 (2010)

the peak just below the Fermi level [see also the inset of Fig.
4(e)] corresponds to a completely filled E; shell with down
spin as can be seen by comparison with Fig. 3(c). The peak
above (and also a little farther from) the Fermi level corre-
sponds to a completely empty spin-down E, shell. Both
peaks carry essentially the full spectral weight of the corre-
sponding orbitals. In contrast, the two peaks near the Fermi
level in the GGA +OCA spectra which are also of E; and E,
symmetries do not carry the full spectral weight of the cor-
responding orbitals due to the renormalization of the quasi-
particle by the electron-electron interactions which cannot be
captured by a static mean-field calculation like GGA.
Figure 4(d) shows that the correlations in the Co 3d shell
also affect the projected DOS of the p_ orbitals on the carbon
atoms that are directly coupled to the Co atom (i.e., the six
carbon atoms nearest to the Co atom). This can be under-
stood as follows: due to the coupling between the carbon p,
and the Co 3d orbitals, the full p, Green’s function G,(w) is
related to the full Green’s of the 3d orbitals G,(w) by

Gp(®) = Gy(w) + 2 G (@) VG @) Vy,Gow),  (5)
d

where Gg(w) is the Green’s function of the (unperturbed)
graphene p, orbitals without the coupling to the Co 3d orbit-
als and Vpd:VZp is the coupling between the p, and indi-
vidual 3d orbitals. The full 3d Green’s function G (w) takes
into account the correlations given by 25 ,(w) and the hybrid-
ization with the p, orbitals given by Ajlw), ie.,
V,aGa(®)V,, represents the full T matrix for the p, electrons.

One can see a temperature-dependent peak roughly at the
position of the peaks in the E;- and E,-spectral densities. For
comparison we also show the p, DOS when the self-energy
of the Co 3d electrons X5, is set to zero. In this case the 3d
levels are far below the Fermi level and hence cannot affect
the p, DOS near the Fermi level. Hence the sharp resonance
in the p, DOS vanishes. This shows that the Kondo peaks in
the Co 3d spectra can also be detected indirectly by spectros-
copy of the nearby carbon atoms.

B. Dependence on 3d-energy levels

The double-counting correction term hy,, given by Eq. (3)
which subtracts out the Coulomb interaction within the cor-
related 3d subspace that has already been taken into account
on a static mean-field level in the LDA or GGA calculation is
not known exactly. Hence the exact position of the 3d-energy
levels is not known. Here we explore how shifting the
3d-energy levels changes the results.

Figures 5(a)-5(c) show the Co 3d-spectral densities for
each of the different symmetries and for different shifts Ae,
of the 3d levels with respect to their original position, and
Figs. 5(d) and 5(e) the corresponding occupancies. Quite ob-
viously there is a drastic change in the correlations when the
impurity levels are lowered by more than 0.2 eV. At that
point, a substantial peak appears in the A; spectra while the
peak in the E; spectra disappears. The peak in the E, spectra
on the other hand becomes qualitatively different for energy
shifts Ae;=-0.2 eV, i.e., their spectral weight increases
considerably. The changes in the spectra are accompanied by
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FIG. 5. (Color online) 3d-energy-level dependence. [(a)—(c)]
Spectral functions of Co 3d levels for different energy shifts Ae, of
the 3d levels [as indicated in the legend of (c)] at T7=37 K and for
the three different symmetries. [(d) and (e)] Orbital occupancies of
the Co 3d levels as a function of the energy shift for each of the
three symmetries and for 7=37 K.

changes in the occupancies: most importantly, the occupancy
of the E, levels increases abruptly by about 0.6 for Ae;~
—0.2 eV. The changes in the 3d levels with A; and E; sym-
metries are less pronounced but also occur at the same point.
Also the overall occupation of the impurity levels changes
quite abruptly by about 0.5 electrons from N,~7 to N,
=~7.5. This indicates a strong change in the electronic con-
figuration of the Co 3d shell.

Indeed we find that for an energy shift around —0.2 eV,
another 3d-shell state with N;,=8 and S=1 becomes similar
in energy to the state with N;=7 and S=3/2. Hence, at this
point the system enters the mixed-valence regime. This ex-
plains the strong increase in the spectral weight in the E,
peak for Ae;=-0.2 eV since the mixed-valence regime is
characterized by a strong peak near the Fermi level. On the
other hand, the integer occupation of 2 in the E; levels, and
the associated spin 1, essentially does not change upon en-
tering the mixed-valence regime. In fact, the occupation is
now even closer to 2 than it was in the Kondo regime. Also
the occupation of the A; level remains essentially constant
upon entering the mixed-valence regime. Hence the mixed
valence is actually only induced in the E, levels since the
occupations of the A, level and the E; levels in the N,;=8
state are the same as in the N,=7 state. The vanishing of the
peak in the E; spectra upon entering the mixed-valence re-
gime is due to the weaker hybridization with the graphene
for negative energies (compare Fig. 3): as the Kondo peak in
the E; levels moves beyond the Dirac point as the impurity
levels are lowered in energy, the Kondo coupling in the E;
levels becomes weaker and the Kondo temperature much
smaller so that the Kondo effect is not observed anymore at
the temperatures considered here. It is not quite clear what
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triggers the peak in the A, spectra upon entering the mixed-
valence regime. One possibility is that the increased charge
fluctuations in the mixed-valence regime also lead to charge
fluctuations in this level via the Hund’s rule coupling to the
other 3d levels. The slight decrease in the occupation of the
A level in the mixed-valence regime supports this view.

Note that the position of a peak (if present) changes ac-
cording to the energy shift. This also explains the change in
the width of the peaks for the E; and E, symmetries: as a
peak moves away from the Fermi level the broadening in-
creases due to the increased hybridization with the graphene
substrate. The A; level on the other hand does not couple at
all to the graphene substrate (zero hybridization) so that the
changes in the shape of the A, peak are purely correlation
effects.

Hence tuning the energies of the Co 3d levels changes the
correlations in these levels due to changes in the occupancy.
More precisely, the system is driven from the Kondo regime
to the mixed-valence regime when the energies of the 3d
levels are lowered by more than 0.2 eV with respect to their
original energies. The change in the correlations is reflected
by corresponding changes in the 3d-spectral functions.

C. Gate-voltage dependence

In the previous section we have seen that changing the
exact position of the Co 3d levels with respect to the Fermi
level has a considerable effect on the electronic correlations
and hence on the spectral density of the 3d levels. Although
changing the impurity levels directly is not feasible in an
experiment, one can instead easily tune the chemical poten-
tial of graphene by application of a gate voltage. The chemi-
cal potential then is shifted with respect to both, the impurity
levels and the graphene bands. Hence it should be possible to
control the electronic correlations and, in particular, the
Kondo effect by application of a gate voltage. The change in
correlations can then be detected in the 3d spectra, for ex-
ample, by STM spectroscopy.

More precisely, a gate voltage v, shifts the chemical po-
tential p with respect to the graphene bands and the impurity
levels according to pw=e€p—ev,, where e denotes the elemen-
tary charge and € is the Fermi level of neutral graphene, i.e.,
the energy of the Dirac points [see inset of Fig. 6(a)]. Overall
the results for shifting the chemical potential presented in
Fig. 6 look very similar to the previous ones for shifting the
impurity levels in Fig. 5.

At the hollow site only the Co 3d levels of E; and E,
symmetries couple to the graphene sheet for low energies
while the A; level is completely decoupled. Hence only the
spectra of E; and E, levels can be measured by an STM.
Therefore in Fig. 6(a), we show the total spectral density of
the Co E; and E, levels for different values of the gate volt-
age. For gate voltages smaller than —0.1 eV there is only one
peak in the spectral function which is due to the E, levels.
For gate voltages =-0.1 eV a second peak appears which
originates from the E; levels. The E, peak and also the E;
peak (when present) move with respect to the chemical po-
tential u according to the change in gate voltage. Hence the
peaks in the spectral function are not pinned to the chemical
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FIG. 6. (Color online) Gate-voltage dependence. (a) 3d-spectral function for E; and E, symmetries for different gate voltages v, (T
=37 K). Different offsets have been added to the spectral functions of different v, in order to better distinguish them from each other. The
inset shows a Dirac cone of the graphene sheet with the position of the chemical potential u for a certain gate voltage v,. (b) Spectral
function for Co 3d level of A, symmetry for different gate voltages v, (T=37 K). The chemical potential in both (a) and (b) is always at
zero frequency. (c) Kondo temperature estimated from width of E, resonance as a function of gate voltage v, at =37 K. [(d) and (e)]
Occupancies of Co 3d levels resolved for the three different symmetries as a function of gate voltage v, at T=37 K.

potential as expected for normal Kondo effect but are rather
pinned to the Dirac points of the graphene sheet. For com-
pleteness we also show the spectral density of the A; level in
Fig. 6(b) for different gate voltages. A peak in the spectral
density at low temperature is only observed for negative bias
voltages. The peak disappears for zero and positive gate volt-
age. Also the resonance in the A; level appears to be pinned
to the Dirac point of graphene rather than to the chemical
potential.

As can be seen in Figs. 6(d) and 6(e) also the individual
occupations of the 3d levels as a function of the applied gate
voltage show a similar behavior as before as a function of the
energy shift Ae, of the 3d levels. In fact, the explanation for
the behavior of the spectra and occupancies as a function of
the energy shift of the 3d levels also applies to their behavior
as a function of the gate voltage. Here, when the gate voltage
becomes smaller than —0.1 V the system leaves the Kondo
regime with an N,=7 and S=3/2 state as the principal con-
tribution to the electronic configuration of the 3d shell, and
enters the mixed-valence regime with an equal contribution
coming from an N,=8 and S=1 state.

We can estimate a Kondo temperature from the width of
the resonance in the Kondo regime. Figure 6(c) shows the
Kondo temperature of the E, levels estimated from the reso-
nance width I' using the relation kzTgx=7-w-I'/8 known
from the Fermi-liquid theory of the Anderson model, where
w is Wilson’s number 0.4128 (see, e.g., the book by
Hewson,® Chap. 5). In Fig. 6(c) we have also included
“Kondo temperatures” estimated from the width of the peaks
for negative gate voltages where the system is not in the
Kondo regime anymore. Hence outside the Kondo regime it
is only a measure for the width of the resonance near the
chemical potential.

Note that in the Kondo regime (i.e., for v,=0) the width
of the resonance and hence the Kondo temperature are es-
sentially constant. This behavior is different from the one

before where we only had shifted the impurity levels. There
the width of the E; and E, peaks increased as they moved
away from the Fermi level due to the linear increase in the
hybridization with the graphene substrate. Here, however,
the peak is pinned to the Dirac point of graphene, i.e., it
moves together with the graphene bands with respect to the
chemical potential. Hence the hybridization with the
graphene conduction electrons does not change here. The
strong dependence of the width of the resonance on the gate
voltage for negative gate voltages on the other hand is due to
the changes in the electronic correlations as the system is
driven out of the Kondo regime.

V. SUMMARY AND CONCLUSIONS

Using DFT electronic structure calculations we have
found that a single Co atom most likely adsorbs at the hollow
site of an otherwise clean graphene sheet. Furthermore the
DFT calculations show that the magnetic moment and the
electronic configuration of the 3d shell of the Co atom de-
pends quite strongly on the adsorption height over the
graphene sheet. At large distances the formation of a local
moment is favored while at short distances the magnetic mo-
ment is quenched due to strong hybridization with the sub-
strate. Since the adsorption energy curves are quite shallow,
it might be possible in an experiment to push the Co atom
from the local moment to the weakly correlated regime.

Using our GGA+OCA correlated electronic structure
method for nanoscopic systems, we have then studied the
impact of dynamical correlations due to the strongly interact-
ing Co 3d electrons on the electronic structure. Because of
the strong crystal-field splitting of the 3d levels by graphene
substrate, the behavior of each of the Co 3d levels strongly
depends on its orbital symmetry.

We find that the dynamic correlations can give rise to a
spin-3/2 Kondo effect. The spin 3/2 is composed of a spin 1

085423-8



ORBITAL SELECTIVE AND TUNABLE KONDO EFFECT OF...

due to two electrons within the doubly degenerate orbitals of
E; symmetry and a spin 1/2 due to a hole within the doubly
degenerate orbitals of the E, symmetry. The Kondo effect
gives rise to corresponding peaks near the Fermi level in the
E- and E,-spectral functions. The A; channel on the other
hand is nearly completely filled and hence in the Kondo
regime, it does not give rise to a peak near the Fermi level.
The realization of a spin-3/2 Kondo effect points to the mul-
tichannel character of graphene. Hence a spin-1/2 impurity
could in principle give rise to multichannel Kondo physics
and non-Fermi-liquid behavior.

The Kondo effect can be controlled by a gate voltage
which changes the chemical potential and thereby the filling
of the 3d levels. The change in the correlations can be ob-
served by a stark change in the spectra as the system is
driven out of the Kondo regime and into the mixed-valence
regime. Another remarkable result is that the Kondo peaks
appear to be pinned to the Dirac point of the graphene sub-
strate rather than to the chemical potential when a gate volt-
age is applied. This last finding is actually in agreement with
very recent STM spectroscopy measurements of Co atoms
on graphene which find peaks in the dI/dV curves that move
according to the applied gate voltage.*> But it has not yet
been pointed out by other theoretical work considering the
dependence of the Kondo effect in graphene on a gate
voltage.!>26
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APPENDIX A: DETAILS OF THE EMBEDDING
METHOD

Here we show how to compute the embedding self-energy
3 given in Eq. (1) that describes the dynamic hybridization
of the central region C with the rest of the system (i.e., the
graphene sheet). First, we obtain an effective mean-field de-
scription of the host material from a GGA calculation for a
supercell of clean graphene corresponding to the C region.
From the Kohn-Sham Hamiltonian HH(E) of the host mate-
rial in reciprocal space we calculate the k-dependent Green’s
function,

Gylk,w)=[w+ pu—-Hyk) +ing]™". (A1)

The local KS Hamiltonian of the supercell is obtained by
summing up Hy(k) over all k points within the Brillouin
zone,

Hyp = 2 Hy (k). (A2)
k

Similarly, the local Green’s function of the supercell is given

by summing up GH(E ,w) over all k points within the Bril-

louin zone,
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Gug() = 2 Gu(k w). (A3)
k

On the other hand, we can write the local Green’s function
also in terms of the local Hamiltonian Hy, of the supercell
and the embedding self-energy (which describes the dynamic
hybridization with the rest of the graphene) as: Gy o(w)
=[w+p—Hyo—Zy(w)]™". Hence the embedding self-energy
is given by

Sp(w)=w+p—Hyo- [GH,O(‘U)]_I . (A4)

APPENDIX B: THE NCA AND OCA IMPURITY
SOLVERS

The general multiorbital Anderson impurity model can be
written in the following form:

A " npns A A
=2 €dida+ S 2 Uapydidigdds
ap

afyd

+ 2 (Vkvaéltvda + VZVadLékv) + 2 e_kl/é\ITa/ékV’

kvao kvo
(B1)

where in order to keep the notation simple we have com-
bined the spin and orbital degrees of freedom into one index
for each impurity level a and each band v.

The NCA and the OCA both solve the Anderson impurity
model by expansion in the hybridization strength around the
atomic limit. The starting point is an exact diagonalization of
the impurity subspace, i.e., of the Co 3d shell in our case,
including the Hubbard-type interaction term,

s

. . 1 i diag
Ha= 2 edido+ 5 2 Uapydidigdyds— 2 Im)E, (m
ap aBysd m

(B2)

where |m) are the many-body eigenstates of 7:(3[, and E,, the
respective eigenenergies.

One now introduces auxiliary fields a,, and dfn (called
pseudoparticles) such that each impurity state is represented

by a corresponding pseudoparticle,
a} [PPV) = |m), (B3)

where |[PPV) is the pseudoparticle vacuum. The complete-
ness of the impurity eigenstates imposes the following con-
straint:

0=2>aa,=1 (B4)

The physical electron operators 32 can now be expressed by
the PP operators,

d‘L = E (Fa?)nmdzém7

n,m

(B5)

where (F®7),,,=(n|d'|m) are the matrix elements of the
impurity-electron creation operator. For later convenience we
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also define the corresponding matrix elements of the

impurity-electron destruction operator as: (F®),,,={(n|d,|m).
The anticommutation rules for the physical electron opera-
tors then require that the PP d,, is a boson (fermion) if the
corresponding state |m) contains an even (odd) number of
electrons.

In the PP representation we can now rewrite the Hamil-
tonian of the generalized Anderson impurity model as fol-
lows:

H=2 E,ddn+ 2 €160+ MO - 1)
m kv

+ 2 (Viyali il (F9)nd, + Hee.), (B6)
mn

kva

where we have included the constraint Q=1 into the Hamil-
tonian. The corresponding Lagrange multiplier N can be in-
terpreted as a (negative) chemical potential for the PPs.

In the PP picture, the hybridization with the bath electrons
given by the last term in Eq. (B6) becomes now the interac-
tion for the PPs. Because of the fermionic and bosonic com-
mutation rules for the PPs, one can now develop a diagram-
matic perturbation expansion in the PP interaction. The PP
propagators can then be written as

Gyw) =[w-\~E, -3, ()], (B7)

where 3, is the PP self-energy describing the dynamic inter-
action with the other PPs.

The noncrossing approximation consists in taken into ac-
count the diagrams shown in the first row of Fig. 7 for a
certain pseudoparticle. The NCA diagrams describe pro-
cesses where a single electron (hole) jumps from the bath to
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NCA OCA NCA
ch = Zf =Zf +

ZSCA= ZII;ICA+

FIG. 7. Diagrams for pseudoparticle self-energies in NCA and
OCA approximations.

the impurity and back thereby temporarily creating a PP with
N+1 (N-1) electrons. The NCA equations correspond to a
self-consistent perturbation expansion to lowest order in the
hybridization function A (@) =2 ,V}, ,Viv.o- Since the fer-
mionic self-energies depend on the dressed bosonic propaga-
tors, and vice versa, the NCA equations have to be solved
self-consistently. Once the NCA equations are solved the
physical quantities can be calculated from the PP self-
energies.

OCA takes into account second-order diagrams where two
bath electron lines cross as shown in the right column of Fig.
7. The self-energies for the fermions (bosons) again depend
on the full propagators for bosons (fermions), and hence the
OCA equations have to be solved self-consistently. The ex-
plicit expressions for the OCA self-energies are second order
in the bath hybridization function A,. The OCA is the
lowest-order self-consistent approximation that is exact up to
first order in the hybridization A, V? for all physical quan-
tities while NCA is only exact to first order in A, in the PP
and conduction-electron self-energies. Further details of the
NCA and OCA impurity solvers can be found, e.g., in Refs.
37 and 38.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, 1. V. Grigorieva, and A. A. Firsov, Sci-
ence 306, 666 (2004).

2K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. L
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

3Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (Lon-
don) 438, 201 (2005).

4K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Falko, M. L
Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim,
Nat. Phys. 2, 177 (2006).

5C. W. I. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).

SA. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

M. H. Vozmediano, M. I Katsnelson, and F. Guinea,
arXiv:1003.5179 (unpublished).

8A. C. Hewson, The Kondo Problem to Heavy Fermions (Cam-
bridge University Press, Cambridge, England, 1993).

9B. Uchoa, V. N. Kotov, N. M. R. Peres, and A. H. Castro Neto,
Phys. Rev. Lett. 101, 026805 (2008).

0P 0. Lehtinen, A. S. Foster, Y. Ma, A. V. Krasheninnikov, and
R. M. Nieminen, Phys. Rev. Lett. 93, 187202 (2004).

1], J. Palacios, J. Fernandez-Rossier, and L. Brey, Phys. Rev. B
77, 195428 (2008).

127, H. Chen, W. G. Cullen, E. D. Williams, and M. S. Fuhrer,
arXiv:1004.3373 (unpublished).

13D. Withoff and E. Fradkin, Phys. Rev. Lett. 64, 1835 (1990).

14M. Hentschel and F. Guinea, Phys. Rev. B 76, 115407 (2007).

ISK. Sengupta and G. Baskaran, Phys. Rev. B 77, 045417 (2008).

16p. D. Sacramento and P. Schlottmann, Phys. Rev. B 43, 13294
(1991).

7P, Schlottmann and P. D. Sacramento, Adv. Phys. 42, 641
(1993).

8D. L. Cox and A. Zawadowski, Adv. Phys. 47, 599 (1998).

D. L. Cox and M. Jarell, J. Phys.: Condens. Matter 8, 9825
(1996).

20C, M. Varma, Z. Nussinovb, and W. van Saarloos, Phys. Rep.
361, 267 (2002).

2P, S. Cornaglia, G. Usaj, and C. A. Balseiro, Phys. Rev. Lett.
102, 046801 (2009).

227.-G. Zhu, K.-H. Ding, and J. Berakdar, EPL 90, 67001 (2010).

23L. Dell’Anna, J. Stat. Mech.: Theory Exp. (2010) P01007.

24T. O. Wehling, H. P. Dahal, A. 1. Lichtenstein, M. I. Katsnelson,
H. C. Manoharan, and A. V. Balatsky, Phys. Rev. B 81, 085413

085423-10


http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nphys245
http://dx.doi.org/10.1103/RevModPhys.80.1337
http://dx.doi.org/10.1103/RevModPhys.81.109
http://arXiv.org/abs/arXiv:1003.5179
http://dx.doi.org/10.1103/PhysRevLett.101.026805
http://dx.doi.org/10.1103/PhysRevLett.93.187202
http://dx.doi.org/10.1103/PhysRevB.77.195428
http://dx.doi.org/10.1103/PhysRevB.77.195428
http://arXiv.org/abs/arXiv:1004.3373
http://dx.doi.org/10.1103/PhysRevLett.64.1835
http://dx.doi.org/10.1103/PhysRevB.76.115407
http://dx.doi.org/10.1103/PhysRevB.77.045417
http://dx.doi.org/10.1103/PhysRevB.43.13294
http://dx.doi.org/10.1103/PhysRevB.43.13294
http://dx.doi.org/10.1080/00018739300101534
http://dx.doi.org/10.1080/00018739300101534
http://dx.doi.org/10.1080/000187398243500
http://dx.doi.org/10.1088/0953-8984/8/48/012
http://dx.doi.org/10.1088/0953-8984/8/48/012
http://dx.doi.org/10.1016/S0370-1573(01)00060-6
http://dx.doi.org/10.1016/S0370-1573(01)00060-6
http://dx.doi.org/10.1103/PhysRevLett.102.046801
http://dx.doi.org/10.1103/PhysRevLett.102.046801
http://dx.doi.org/10.1209/0295-5075/90/67001
http://dx.doi.org/10.1088/1742-5468/2010/01/P01007
http://dx.doi.org/10.1103/PhysRevB.81.085413

ORBITAL SELECTIVE AND TUNABLE KONDO EFFECT OF...

(2010).

23T. O. Wehling, A. V. Balatsky, M. 1. Katsnelson, A. L. Lichten-
stein, and A. Rosch, Phys. Rev. B 81, 115427 (2010).

26M. Voijta, L. Fritz, and R. Bulla, EPL 90, 27006 (2010).

27y. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S.
Wingreen, Science 280, 567 (1998).

ZN. Néel, J. Kroger, L. Limot, K. Palotas, W. A. Hofer, and R.
Berndt, Phys. Rev. Lett. 98, 016801 (2007).

291.. Vitali, R. Ohmann, S. Stepanow, P. Gambardella, K. Tao, R.
Huang, V. S. Stepanyuk, P. Bruno, and K. Kern, Phys. Rev. Lett.
101, 216802 (2008).

30N. Néel, J. Kroger, R. Berndt, T. O. Wehling, A. 1. Lichtenstein,
and M. 1. Katsnelson, Phys. Rev. Lett. 101, 266803 (2008).

31D, Jacob, K. Haule, and G. Kotliar, Phys. Rev. Lett. 103, 016803
(2009).

32Y. Mao, J. Yuan, and J. Zhong, J. Phys.: Condens. Matter 20,
115209 (2008).

BR. Dovesi et al., CRYSTAL06, Release 1.0.2, Theoretical Chemis-
try Group, Universita’ Di Torino, Torino, Italy.

PHYSICAL REVIEW B 82, 085423 (2010)

34 A. Grechnev, I. Di Marco, M. 1. Katsnelson, A. L. Lichtenstein, J.
Wills, and O. Eriksson, Phys. Rev. B 76, 035107 (2007).

35 A. G. Petukhov, L. I. Mazin, L. Chioncel, and A. I. Lichtenstein,
Phys. Rev. B 67, 153106 (2003).

36G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Par-
collet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

37K. Haule, C. Yee, and K. Kim, Phys. Rev. B 81, 195107 (2010).

38 K. Haule, S. Kirchner, J. Kroha, and P. Wélfle, Phys. Rev. B 64,
155111 (2001).

3 A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

40M. J. Frisch et al., GAUSSIANO3, Revision B.01, Gaussian, Inc.,
Pittsburgh PA, 2003.

4'Unfortunately, we were not able to converge hybrid functional
calculations with CRYSTALO6 for Co atoms on graphene sheets.

42V, Brar, R. Decker, H. Solowan, Y. Wang, L. Maserati, K. Chan,
H. Lee, C. O. Girit, A. Zettl, S. Louie, M. Cohen, and M. Crom-
mie, arXiv:1006.1014 (unpublished).

085423-11


http://dx.doi.org/10.1103/PhysRevB.81.085413
http://dx.doi.org/10.1103/PhysRevB.81.115427
http://dx.doi.org/10.1209/0295-5075/90/27006
http://dx.doi.org/10.1126/science.280.5363.567
http://dx.doi.org/10.1103/PhysRevLett.98.016801
http://dx.doi.org/10.1103/PhysRevLett.101.216802
http://dx.doi.org/10.1103/PhysRevLett.101.216802
http://dx.doi.org/10.1103/PhysRevLett.101.266803
http://dx.doi.org/10.1103/PhysRevLett.103.016803
http://dx.doi.org/10.1103/PhysRevLett.103.016803
http://dx.doi.org/10.1088/0953-8984/20/11/115209
http://dx.doi.org/10.1088/0953-8984/20/11/115209
http://dx.doi.org/10.1103/PhysRevB.76.035107
http://dx.doi.org/10.1103/PhysRevB.67.153106
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/PhysRevB.81.195107
http://dx.doi.org/10.1103/PhysRevB.64.155111
http://dx.doi.org/10.1103/PhysRevB.64.155111
http://dx.doi.org/10.1063/1.464913
http://arXiv.org/abs/arXiv:1006.1014

